New Uniqueness Theorems for Trigonometric Series
نویسندگان
چکیده
A uniqueness theorem is proved for trigonometric series and another one is proved for multiple trigonometric series. A corollary of the second theorem asserts that there are two subsets of the d-dimensional torus, the first having a countable number of points and the second having 2d points such that whenever a multiple trigonometric series "converges" to zero at each point of the former set and also converges absolutely at each point of the latter set, then that series must have every coefficient equal to zero. This result remains true if "converges" is interpreted as any of the usual modes of convergence, for example as "square converges" or as "spherically converges."
منابع مشابه
Some spherical uniqueness theorems for multiple trigonometric series
We prove that if a multiple trigonometric series is spherically Abel summable everywhere to an everywhere finite function f(x) which is bounded below by an integrable function, then the series is the Fourier series of f(x) if the coefficients of the multiple trigonometric series satisfy a mild growth condition. As a consequence, we show that if a multiple trigonometric series is spherically con...
متن کاملUniqueness Questions for Multiple Trigonometric Series
We survey some recent results on the uniqueness questions on multiple trigonometric series. Two basic questions, one about series which converges to zero and the other about the series which converge to an integrable function, are asked for four modes of convergence: unrestricted rectangular convergence, spherical convergence, square convergence, and restricted rectangular convergence. We will ...
متن کاملConvergence, Uniqueness, and Summability of Multiple Trigonometric Series
In this paper our primary interest is in developing further insight into convergence properties of multiple trigonometric series, with emphasis on the problem of uniqueness of trigonometric series. Let E be a subset of positive (Lebesgue) measure of the k dimensional torus. The principal result is that the convergence of a trigonometric series on E forces the boundedness of the partial sums alm...
متن کاملFourier Series in Several Variables
0. Preface. This article is a survey of certain aspects of the theory of multiple Fourier and trigonometric series. I t is by no means meant to be a complete survey; for example, it is practically disjoint with the material covered on the subject in Zygmund's book [38, Chapter 17.]. There are eight sections to this survey. §1 is the introduction. §2, §3, and §4 are expository in the sense that ...
متن کاملMaximal Smoothness of the Anti-analytic Part of a Trigonometric Null Series
We proved recently [6] that the anti-analytic part of a trigonometric series ,converging to zero almost everywhere, may belong toL on the circle. Here we prove that it can even beC∞, andwe characterize precisely the possible degree of smoothness in terms of the rate of decrease of the Fourier coefficients. This sharp condition might be viewed as a “new quasi-analyticity ”. 1. RESULTS The classi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008